Micro-, meso- and macro-scale analysis of composite laminates by unified theory of structures

Erasmo Carrera, Alberto García de Miguel and Alfonso Pagani

Department of Mechanical and Aerospace Engineering
Politecnico di Torino, Turin, Italy

American Society of Mechanical Engineers, IMECE 2017
Our work

➢ Provide a unified methodology to systematically generate different classes of structural models

➢ Zoom into different scales by means of a unified formulation with no decoupling

➢ Reduce the computational size of composite simulation in such a way that several scales can be accounted
I. The unified formulation for beam analysis

II. Component-wise analysis: coupling macro-, meso, micro-scale modeling

III. Weak form solutions
 - Cross-ply beam

IV. Strong form solutions
 - Sandwich beam

V. Conclusions and perspectives
Carrera Unified Formulation 1D

Euler-Bernoulli

\[
\begin{align*}
 u_x(x, y, z) &= u_{x1}(y) \\
 u_y(x, y, z) &= u_{y1}(y) - x u_{x1,y}(y) - z u_{z1,y}(y) \\
 u_z(x, y, z) &= u_{z1}(y)
\end{align*}
\]

Timoshenko

\[
\begin{align*}
 u_x(x, y, z) &= u_{x1}(y) \\
 u_y(x, y, z) &= u_{y1}(y) - x u_{y2}(y) - z u_{y3}(y) \\
 u_z(x, y, z) &= u_{z1}(y)
\end{align*}
\]

Saint Venant

\[
\begin{align*}
 u_x(x, y, z) &= u_{x1}(y) - z u_{y2}(y) \\
 u_y(x, y, z) &= u_{y1}(y) - x u_{y2}(y) - z u_{y3}(y) + \psi(x,z)u_{y3}(y) \\
 u_z(x, y, z) &= u_{z1}(y) + x u_{z2}(y)
\end{align*}
\]

K. Washizu: "For a complete removal of the inconsistency and an improvement of the accuracy of the beam theory" -> enrich beam kinematics with higher-order terms

Carrera Unified Formulation

\[
\begin{align*}
 u_x(x, y, z) &= F_1(x, z) u_{x1}(y) + F_2(x, z) u_{x2}(y) + F_3(x, z) u_{x3}(y) + \ldots + F_M(x, z) u_{xM}(y) \\
 u_y(x, y, z) &= F_1(x, z) u_{y1}(y) + F_2(x, z) u_{y2}(y) + F_3(x, z) u_{y3}(y) + \ldots + F_M(x, z) u_{yM}(y) \\
 u_z(x, y, z) &= F_1(x, z) u_{z1}(y) + F_2(x, z) u_{z2}(y) + F_3(x, z) u_{z3}(y) + \ldots + F_M(x, z) u_{zM}(y)
\end{align*}
\]

\[
\mathbf{u}(x, y, x) = \mathbf{F}_\tau(x, z) \mathbf{u}_\tau(y) \quad \tau = 1, \ldots, M
\]
Component-wise analysis

- Using the unified formulation, **any class and order** of theory can be generated
 - FSDT, HOT, ESL, LW, ZZ
- Component-wise (CW): generalization of LW to **any kind of structural component**

![Assembled structural matrix](image)
Efficient structural solutions

- Each sub-component modeled by means of 1D or 2D refined elements

Multi-scale composite simulation

- ESL, LW and CW-type models can be generated for the same structural problem
- **Optimized analysis**: linking the scale to the class of theory
Hierarchical Legendre Expansions

➢ **Vertex expansions**

\[F_\tau = (1 - r_\tau r)(1 - s_\tau s) \]

➢ **Side expansions**

\[F_\tau = (1 - s)\varphi_p(r) \]

➢ **Internal expansions**

\[F_\tau = \varphi_{pr}(r)\varphi_{ps}(s) \quad p_r + p_s = p \]

➢ **Hierarchical refinement** of the beam kinematics

➢ **Non-local distribution of unknowns** over the cross-section (CW)

➢ **Geometrically exact** curved sections by means of a non-isoparametric mapping
Weak form solutions

PVD for linear static
\[\delta L_{\text{int}} = \int_L \int_{\Omega} \delta \varepsilon^T \sigma \, d\Omega \, dy = \delta L_{\text{ext}} \]

Displacement field (1D FEM)
\[u(x, y, z) = F_\tau(x, z) N_i(y) u_{\tau i} \]

Internal work
\[\delta L_{\text{int}} = \delta u_{\tau i}^T K^{\tau s i j} u_{s j} \]

External work
\[\delta L_{\text{ext}} = F_\tau \dot{N}_i P \delta u_{\tau i}^T \]

Governing equations
\[K^{\tau s i j} U^{s j} = P^{\tau i} \]

Fundamental nucleus
\[K_{x x}^{i j r s} = \tilde{C}_{22} \int_{\Omega} F_{\tau, x} F_{s, x} \, d\Omega \int_{l} N_i N_j \, dy + \ldots \]
Cross-ply beam

- $L = 40 \text{ mm}$, $h = 0.6 \text{ mm}$
- $b = 0.8 \text{ mm}$, $d = 0.16 \text{ mm}$
- $L/h = 50$
- $[0/90/0]$ laminate

Proposed approaches:
1. **Meso-scale**: layer-wise model, precision at the layer scale
2. **Micro-scale**: direct numerical model, precision at the component level
3. **Meso-micro scale**: global-local model, precision at the component level in areas of interest over the cross-section

<table>
<thead>
<tr>
<th>Component</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>G_{12}</th>
<th>G_{13}</th>
<th>G_{23}</th>
<th>ν_{12}</th>
<th>ν_{13}</th>
<th>ν_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>202.038</td>
<td>12.134</td>
<td>12.134</td>
<td>8.358</td>
<td>8.358</td>
<td>47.756</td>
<td>0.2128</td>
<td>0.2128</td>
<td>0.2704</td>
</tr>
<tr>
<td>Layer</td>
<td>103.173</td>
<td>5.145</td>
<td>5.145</td>
<td>2.107</td>
<td>2.107</td>
<td>2.353</td>
<td>0.2835</td>
<td>0.2835</td>
<td>0.3124</td>
</tr>
<tr>
<td>Matrix</td>
<td>3.252</td>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.355</td>
</tr>
</tbody>
</table>

Table 4: $1 \equiv$ longitudinal, $2 \equiv$ orthogonal and $3 \equiv$ transverse.
Cross-ply beam

Layer-wise approach
- 10 B4 beam elements
- 3 HLE expansions
- 1,674 (HL2) – 7,068 (HL6)

Direct numerical approach (1D)
- 10 cubic B4 beam elements
- 44 HLE curved expansions
- 22,506 (HL3) – 73,563 (HL6)

Glocal-local approach
- 10 B4 beam elements
- 16 HLE curved expansions
- 9,486 (HL3) – 29,295 (HL6)

Direct numerical approach (3D Nastran)
- 540,000 HEX8 brick elements
- 1,579,653 DOFs

November 6, 2017, Tampa Convention Center, Tampa (FL), USA
Cross-ply beam

Loadcase: clamped-free + point load

\[L = 40 \text{mm} \]

\[P = 1 \text{N} \]

Convergence analysis

<table>
<thead>
<tr>
<th>Hexa8</th>
<th>(v_z \times 10^3 \text{ m})</th>
<th>(\sigma_{yy} \times 10^{-8} \text{ Pa})</th>
<th>(\sigma_{yx} \times 10^{-8} \text{ Pa})</th>
<th>DOFs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[b/2, L/2]</td>
<td>[b/2, L/2, 0.0]</td>
<td>[b/2, L/2, 0.2]</td>
<td></td>
</tr>
<tr>
<td>Hexa8</td>
<td>-1.569</td>
<td>-5.928</td>
<td>2.147</td>
<td>1579653</td>
</tr>
<tr>
<td>HL2</td>
<td>-1.491</td>
<td>-2.880</td>
<td>-1.577</td>
<td>1674</td>
</tr>
<tr>
<td>HL3</td>
<td>-1.491</td>
<td>-2.880</td>
<td>-1.710</td>
<td>2604</td>
</tr>
<tr>
<td>HL4</td>
<td>-1.491</td>
<td>-2.879</td>
<td>-1.712</td>
<td>3813</td>
</tr>
<tr>
<td>HL5</td>
<td>-1.491</td>
<td>-2.879</td>
<td>-1.655</td>
<td>5031</td>
</tr>
<tr>
<td>HL6</td>
<td>-1.491</td>
<td>-2.880</td>
<td>-1.654</td>
<td>7068</td>
</tr>
<tr>
<td>HL2</td>
<td>-0.348</td>
<td>-0.838</td>
<td>-43.008</td>
<td>13671</td>
</tr>
<tr>
<td>HL3</td>
<td>-1.547</td>
<td>-5.849</td>
<td>-2.142</td>
<td>22506</td>
</tr>
<tr>
<td>HL4</td>
<td>-1.548</td>
<td>-5.848</td>
<td>-2.169</td>
<td>35433</td>
</tr>
<tr>
<td>HL5</td>
<td>-1.548</td>
<td>-5.848</td>
<td>-2.211</td>
<td>52452</td>
</tr>
<tr>
<td>HL6</td>
<td>-1.548</td>
<td>-5.848</td>
<td>-2.212</td>
<td>73563</td>
</tr>
<tr>
<td>HL2</td>
<td>-1.046</td>
<td>-3.717</td>
<td>-124.390</td>
<td>5859</td>
</tr>
<tr>
<td>HL3</td>
<td>-1.498</td>
<td>-5.661</td>
<td>-2.384</td>
<td>9486</td>
</tr>
<tr>
<td>HL4</td>
<td>-1.498</td>
<td>-5.659</td>
<td>-2.381</td>
<td>14601</td>
</tr>
<tr>
<td>HL5</td>
<td>-1.498</td>
<td>-5.659</td>
<td>-2.412</td>
<td>21204</td>
</tr>
<tr>
<td>HL6</td>
<td>-1.498</td>
<td>-5.659</td>
<td>-2.408</td>
<td>29295</td>
</tr>
</tbody>
</table>
Cross-ply beam

Layer wise

Longitudinal stresses

Shear stresses

Cost

~ 5,000

~ 70,000

~ 20,000

Model

Direct approach

Global-local

~ 20,000
Strong form solutions

Internal work
\[\delta L_{\text{int}} = \int_I (\delta u_\tau)^T K^{\tau_\text{s}} u_s \, dy + [(\delta u_\tau)^T \Pi^{\tau_\text{s}} u_s] \big|_{y=l} \]

External work
\[\delta L_{\text{ext}} = \left(\delta L_{p_{xx}}^{n_\pm} + \delta L_{p_{xy}}^{n_\pm} + \delta L_{p_{xz}}^{n_\pm} + \delta L_{p_{zy}}^{n_\pm} + \delta L_{p_{zz}}^{n_\pm} \right) \]

Navier-type solution
\[
\begin{align*}
 u_{xs}(y) &= U_{xs} \sin(\alpha y) \\
 u_{ys}(y) &= U_{ys} \cos(\alpha y) \\
 u_{zs}(y) &= U_{zs} \sin(\alpha y)
\end{align*}
\]

\[
P_{ij}^{n_\pm} = \begin{cases}
 p_{xx}^{n_\pm} \sin(\alpha y), p_{xy}^{n_\pm} \cos(\alpha y), p_{xz}^{n_\pm} \sin(\alpha y), \\
 p_{zx}^{n_\pm} \sin(\alpha y), p_{zy}^{n_\pm} \cos(\alpha y), p_{zz}^{n_\pm} \sin(\alpha y) \end{cases}
\]

with \(\alpha = \frac{m \pi}{l} \)

Governing equations
\[K^{\tau_\text{s}} U^{\text{s}} = P^{\tau} \]
Sandwich beam

\[q = q_0 \sin(\eta y)/\eta \]

\[u_y \text{ at } (b/2,0,z) \]

\[u_z \text{ at } (b/2,L/2,z) \]

\[\sigma_{yy} \text{ at } (b/2,L/2,z) \]

\[\sigma_{yz} \text{ at } (b/2,0,z) \]

\[b = 0.04 \text{m}, \ h = 0.12 \text{m}, \ L/h = 10 \]

DOFs (Navier vs FE):

- LW (975 vs 18,525)
- GL (7,509 vs 142,671)

Table:

<table>
<thead>
<tr>
<th>Component</th>
<th>(E_1) (Pu)</th>
<th>(E_2) (Pu)</th>
<th>(G_{12}) (Pu)</th>
<th>(G_{13}) (Pu)</th>
<th>(G_{23}) (Pu)</th>
<th>(\gamma_1)</th>
<th>(\gamma_2)</th>
<th>(\gamma_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>4.41x10^11</td>
<td>1.30x10^10</td>
<td>1.19x10^10</td>
<td>8.47x10^8</td>
<td>8.47x10^8</td>
<td>4.10x10^8</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Matrix</td>
<td>6.55x10^9</td>
<td>8.55x10^9</td>
<td>5.55x10^9</td>
<td>3.25x10^9</td>
<td>3.25x10^9</td>
<td>3.25x10^9</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Core</td>
<td>2.04x10^7</td>
<td>2.04x10^7</td>
<td>2.04x10^7</td>
<td>1.01x10^7</td>
<td>1.01x10^7</td>
<td>1.01x10^7</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Top face</td>
<td>2.04x10^7</td>
<td>9.50x10^6</td>
<td>9.50x10^6</td>
<td>4.77x10^6</td>
<td>4.77x10^6</td>
<td>3.92x10^6</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Y. Yan et al. Exact solutions for the macro-, meso- and micro-scale analysis of composite laminates and sandwich structures
Sandwich beam

Longitudinal stresses at midspan

Transverse shear stresses at edge

b0 = 0.04m, h = 0.12m, L/h = 10

<table>
<thead>
<tr>
<th>Component</th>
<th>E_1 (Pa)</th>
<th>E_2 (Pa)</th>
<th>E_3 (Pa)</th>
<th>G_{12} (Pa)</th>
<th>G_{13} (Pa)</th>
<th>G_{23} (Pa)</th>
<th>ν_{12}</th>
<th>ν_{13}</th>
<th>ν_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>4.44x10^10</td>
<td>1.36x10^9</td>
<td>1.36x10^9</td>
<td>8.67x10^9</td>
<td>8.67x10^9</td>
<td>1.48x10^9</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Matrix</td>
<td>6.55x10^9</td>
<td>8.55x10^9</td>
<td>8.55x10^9</td>
<td>3.29x10^9</td>
<td>3.29x10^9</td>
<td>3.29x10^9</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Core</td>
<td>2.21x10^9</td>
<td>2.98x10^9</td>
<td>2.76x10^9</td>
<td>1.46x10^9</td>
<td>5.43x10^9</td>
<td>1.50x10^9</td>
<td>0.09</td>
<td>3.00E-05</td>
<td>3.00E-05</td>
</tr>
<tr>
<td>Top face</td>
<td>2.29x10^9</td>
<td>9.65x10^7</td>
<td>9.65x10^7</td>
<td>4.77x10^7</td>
<td>4.77x10^7</td>
<td>3.92x10^7</td>
<td>0.26</td>
<td>0.20</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Cross-section (DOFs Navier vs FE):

➢ LW: 32 L16 (975 vs 18,525)
➢ GL: 272 L16 (7,509 vs 142,671)

Y. Yan et.al. Exact solutions for the macro-, meso- and micro-scale analysis of composite laminates and sandwich structures
Conclusions

➢ The unified formulation is used as a generator of structural theories to provide efficient solutions for composite problems

➢ The component-wise (CW) method is presented as an extension of the traditional approaches (ESL, LW,...) and applied to the accurate analysis of composite structures

➢ A 3M (macro-, meso- and micro-scale) framework is proposed. Objects from the component to the fiber level are accounted in a unified manner without the need of changing the model paradigms from one scale to the other nor the use of artificial coupling techniques

➢ Low cost exact solutions can also be obtained through a strong formulation of the CW for particular cases. This tool can be used for benchmarking.

Future work

➢ Global-local framework in which FSDT, ESL, LW and CW theories can be axiomatically placed over the finite element space -> Node Dependent Kinematics (NDK)

➢ Investigation of damage and failure
FULLCOMP - FULLy integrated analysis, design, manufacturing and health-monitoring of COMPosite structures

- Partners:
 1. Politecnico di Torino (Italy)
 2. University of Bristol (UK)
 3. ENSMA Bordeaux (France)
 4. Leibniz Universitaet Hannover (Germany)
 5. LIST (Luxemburg)
 6. ELAN-AUSY GmbH (Germany)
 7. Universidade do Porto (Portugal)
 8. University of Washington (USA)
 9. RMIT (Australia)

- Learn more about us:
 - www.fullcomp.net
 - Researchgate, Linkedin, Facebook
Thank you for the attention,
Any questions?